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We obtain the asymptotics of the Christoffel functions for certain Jacobi-type
weight functions on the standard simplex in Rd. We also establish a sharp upper
bound of the asymptotics for a large class of weight functions on the simplex.
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1. INTRODUCTION

The purpose of this paper is to study the asymptotics of the Christoffel
functions with respect to a weight function on the standard simplex 7d

of Rd,

7d=[x # Rd: x1�0, ..., xd�0, 1&x1& } } } &xd�0].

Let 6d be the space of polynomials in d variables and let 6 d
n be the sub-

space of polynomials of degree at most n. For a weight function W defined
on a region 0 in Rd, the n th Christoffel function, 4n(W), can be defined
by

4n(W; x)= min
P(x)=1, P # 6 d

n
|

0
P2(y) W(y) dy. (1.1)

It has a close relation with orthogonal polynomials in several variables. Let
us denote by Pd

n the space of homogenous polynomials of degree n on Rd

and let rd
n=dim Pd

n ; it follows that rd
n=( n+d&1

n ). Let [Pn
k], 1�k�rd

n , and
0�n<�, denote one family of orthonormal polynomials with respect to
W that forms a basis of 6 d

n , where the superscript n means that Pn
k # 6 d

n .
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The reproducing kernel, Kn(W), of the space 6 d
n with respect to W is

defined by

Kn(W; x, y)= :
n

k=0

Pk(W; x, y) and

Pk(W; x, y)= :
rd

k

j=1

Pk
j (x) Pk

j (y). (1.2)

The function Pn(W) is the reproducing kernel of the subspace spanned by
Pn

k , 1�k�rd
n . An alternative definition of the Christoffel function 4n(W)

is

4n(W; x)=1�Kn(W; x, x). (1.3)

We note that the definition of Pn(W) or Kn(W) is independent of the
particular choice of the orthonormal basis (see, for example, [8, p. 250]).

Because of their important role in the theory of orthogonal polynomials
in one variable, the Christoffel functions have been studied intensively; in
particular, their asymptotics have been established for large classes of
measures on R; see, for example, the survey [4]. On the contrary, relative
little is known for the Christoffel functions in several variables; we refer to
[6, 8] for the applications of 4n(W) in the theory of orthogonal polyno-
mials in several variables and to [2, 6, 7] for the few cases where the
asymptotics of 4n(W) have been established. The results obtained so far,
however, suggest that the asymptotics of 4n(W) take the form

lim
n � � \n+d

d + 4n(W; x)=W(x)�W0(x), (1.4)

where W0 is an analogy of the Chebyshev weight function associated with
the domain under consideration. Indeed, the above equation has been
established for the Chebyshev weight function W(x)=> (1&x2

i )&1�2�?d on
[&1, 1]d [6] and the weight functions W(x)=w:(1&|x|2):&1�2 on the
unit ball Bd=[x: |x|2�1], for which :=0 corresponds to the Chebyshev
weight on Bd [2]. Moreover, for a large class of radial weight functions on
Bd, the inequality

lim sup
n � � \n+d

d + 4n(W; x)�W(x)�W0(x) (1.5)

has been proved in [7], making use of a compact formula of Kn(W) for the
Chebyshev weight function in [9].

In contrary to the one dimension, the geometry of the support set of
weight functions can be very intricate in higher dimensional spaces. At this
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point, there seems to be little understanding on how this complexity reflects
on the theory of orthogonal polynomials in several variables, in particular,
on the asymptotics of the Christoffel functions. To better assess the situa-
tion, we need to study a few examples in detail. In the present paper we
study the asymptotics of the Christoffel functions for weight functions
defined on the simplex. We shall prove the asymptotics relation (1.4) for
the Chebyshev weight function (x1 } } } xd (1&x1& } } } &xd))1�2 and a few
other weight functions on 7d, and prove the inequality (1.5) for a large
class of weight functions on 7d. The proof will be based on a compact
formula of the reproducing kernel for the Chebyshev weight function,
which was discovered only recently in [10].

2. THE CHRISTOFFEL FUNCTION FOR
THE CHEBYSHEV WEIGHT FUNCTION

We start with the compact formula of Pn derived in [10] for the weight
function

W:(x)=w: x:1&1�2
1 } } } x:d&1�2

d (1&|x| 1):d+1&1�2, : i�0, (2.1)

on the simplex 7d, where w: is a normalization constant such that
�7d W: dx=1. Let |x| 1=|x1 |+ } } } +|xd | for x # Rd. The compact formula
of Pn(W:) takes the form

Pn(W: ; x, y)=
2n+|:|1+(d&1)�2

2d+1 ( |:|1+(d&1)�2)

_|
[&1, 1]d+1

C (|:|1+(d&1)�2)
2n (- x1y1 t1+ } } } +- xd+1yd+1td+1)

_ `
d+1

i=1

c:i
(1&t2

i ):i&1 dt,

where x, y # 7d, xd+1=1&|x|1 and yd+1=1&|y|1 , and the constant c+ is
defined by c+=1��1

&1 (1&t2)+&1 dt. Moreover, if one of the :i � 0, then
the formula holds upon using the limit

lim
+ � 0

c+ |
1

&1
f (t)(1&t2):&1 dt=[ f (1)+ f (&1)]�2.

In particular, when :=0, we end up with the formula

Pn(W0 ; x, y)=
2n+(d&1)�2

2d (d&1)

_ :
= # [&1, 1]d+1

C ((d&1)�2)
2n (- x1y1=1+ } } } +- xd+1yd+1 =d+1),
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where x, y # 7d, xd+1=1&|x|1 and yd+1=1&|y|1 . We call the weight
function

W0(x)=w0 x&1�2
1 } } } x&1�2

d (1&|x| 1)&1�2,

where w0=?(d+1)�2�1((d+1)�2)

the Chebyshev weight function on 7d. The compact formula has been used
in [10] to prove that the expansion of a continuous function in the Fourier
orthogonal series with respect to W: is uniformly Cesa� ro (C, $) summable
if and only if $>|:|1+(d&1)�2, when one :i =0. The asymptotics of
Pn(W0) will also be derived from the compact formula. We need the
asymptotic formula for C (*)

n from [5, Theorem 8.21.8, p. 196], which we
state as

Lemma 2.1. For *>0, x=cos %,

C (*)
n (x)=

1(*+1�2) 1(n+2*) 2*

1(2*) 1(n+*+1�2) 1(1�2)

__ 1
(sin %)* n&1�2 cos \(n+*) %&

*?
2 ++O(n&3�2)& (2.2)

for 0<%<?; in particular,

C (*)
n (x)=O(n*&1), 0<%<?, (2.3)

where the bound for the error term holds uniformly in [=, ?&=].

Before we state our result, we need one more definition. Recall that the
simplex 7d is defined by d+1 inequalities: x1�0, ..., xd�0 and 1&|x| 1�0
for x # Rd. A k-dimensional face of 7d, 0�k�d, contains elements of 7d for
which exactly d&k inequalities become equalities. In particular, if k=d,
then none of the inequalities becomes equality, so that the (unique) d-dimen-
sional face of 7d is the interior of 7d. We also note that a 0-dimensional face
is one of the vertices of the simplex 7d. We shall denote the union of k-dimen-
sional faces of 7d by 7d

k for 0�k�d, and we also use Int 7d for 7d
d .

Theorem 2.2. If d�2, then for all x # 7d
k

lim
n � �

1

\n+d&1
n +

Pn(W0 ; x, x)=2d&k, 0�k�d.

Proof. Setting y=x in the compact formula of Pn(W0) and using the
fact that xd+1=1&x1& } } } &xd and that C (*)

2n is an even function, we
have
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Pn(W0 ; x, x)=
2n+(d&1)�2

2d (d&1)

_ :
= # [&1, 1]d+1

C ((d&1)�2)
2n (x1=1+ } } } +xd+1=d+1)

=
2n+(d&1)�2
2d&1(d&1) _C ((d&1)�2)

2n (1)

+ :
d

k=1

:
1�i1< } } } <ik�d

C ((d&1)�2)
2n (1&2xi1

& } } } &2xid
)&

If x # 7d
k , k>0, then it has exactly d&k components zero, say xk+1

= } } } =xd=0, and other k components positive and satisfying, say, 1&x1

& } } } &xk>0; in particular, it follows that 1<1&2x1& } } } &2xk<1.
Therefore, for x # 7d

k , there are exactly

\d&k
1 ++\d&k

2 ++ } } } +\d&k
d&k+=2d&k&1

many terms in the sum over 1�i1< } } } <ik�d equal to C ((d&1)�2)
2n (1) and

the rest of the terms are in the order of O(n(d&3)�2) as n � � by (2.3) in
Lemma 2.1. Thus, for x # 7d

k , we obtain

Pn(W0 ; x, x)=
2n+(d&1)�2
2d&1(d&1)

[2d&kC ((d&1)�2)
2n (1)+O(n(d&3)�2)].

Using the fact that [5, (4.7.3), p. 80]

C (*)
n (1)=

1(n+2*)
1(n+1) 1(2*)

and
1(n+*+1)

1(n+1)
=n*(1+O(n&1)),

we conclude that

lim
n � �

1

\n+d&1
n +

Pn(W0 ; x, x)

= lim
n � �

2n+(d&1)�2
2d&1(d&1)

} 2d&k }
1(d )(2n)d&2 (1+O(n&1))
1(d&1) nd&1(1+O(n&1))

=2d&k,
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whenever d�3, where we have used the fact that 1(*+1)=*1(*). If k=0,
then x # 7d

0 is one of the vertices of 7d. The formula of Pn(W0) shows that

Pn(W0 , x, x)=
2n+(d&1)�2

2d (d1)
2d+1C ((d&1)�2)

2n (1),

from which the desired result follows easily as in the case of k>0. K

For d=1, the function Pn(W0 , x, x) reduces to a multiple of T 2
n(x)=

cos n%, x=cos %; hence, the above limit does not hold for d=1. Although
we have a compact formula of Pn(W: ; x, x) for all : # Rd

+ , it is not clear
how to use it to obtain the asymptotic as that in Theorem 2.2.

Theorem 2.3. If d�2, then for all x # 7d
k

lim
n � �

1

\n+d
n +

Kn(W0 ; x, x)=2d&k, 0�k�d.

Proof. We use the fact that if bn � � as n � �, then (cf. [3, p. 414])

lim
n � �

an

bn
= lim

n � �

an&an&1

bn&bn&1

.

It then follows from (1.2) that

lim
n � �

Kn(W0 ; x, x)

\n+d
n +

= lim
n � �

Pn(W0 ; x, x)

\n+d
n +&\n&1+d

n&1 +
= lim

n � �

Pn(W0 ; x, x)

\n+d&1
n +

.

Hence, the desired result follows from Theorem 2.2. K

Corollary 2.4. If d�2, then for all x # 7d
k

lim
n � � \n+d

n + 4n(W0 ; x)=2k&d, 0�k�d.

In particular, the limit is 1 for x # Int 7d. We note that the limit also
holds for d=1. For : # 2Nd, the asymptotics of 4n(W:) will follow from a
general result in the following section.

3. ASYMPTOTICS OF THE CHRISTOFFEL FUNCTIONS

As in the case of the unit ball Bd, the knowledge of 4(W0) on 7d allows
us to derive a general result on the asymptotics of the Christoffel functions.
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In this section we prove an inequality (1.5) for a large class of weight func-
tions on 7d. The proof is based on an approximation identity, which is
of interest in itself. We define a linear operator, Ln( f ), on the class of
continuous functions on 7d as

Ln( f; x)=
1

Kn(W0 ; x, x) |7 d
[Kn(W0 ; x, y)]2 f (y) W0(y) dy.

Clearly this is a positive linear operator. Moreover, it preserves constant
functions by the orthogonality and the definition of Kn(W0 ; x, y); in
particular, Ln(1)=1, which shows that Ln is an approximate identity. We
have

Theorem 3.1. Let f be a bounded function on 7d, such that f is continuous
in the interior of 7d. Then

lim
n � �

1
Kn(W0 ; x, x) |7 d

[Kn(x, y)]2 f (y) W0(y) dy= f (x), x # Int 7d.

Moreover, the convergence holds uniformly on each compact set contained
in Int 7d.

Proof. From the identity [5, p. 83, (4.7.29)],

(2k+*) C (*)
2k (x)=*(C (*+1)

2k (x)&C (*+1)
2k&2 (x)),

where C (*+1)
&2 =0, it follows that

:
n

k=0

2k+*
*

C (*)
2k (x)=C (*+1)

2n (x).

Together with the compact formula of Pn(W0) and the definition of
Kn(W0) in (1.2), we have the compact formula,

Kn(W0 ; x, x)

=
1

2d&1 :
= # [&1, 1]d+1

C ((d+1)�2)
2n (- x1y1 =1+ } } } +- xd+1 yd+1 =d+1).

From the fact that Ln(1; x)=1, it follows readily that

In(x) := } 1
Kn(W0 ; x, x) |7d

[Kn(W0 ; x, y)]2 f (y) W0(y) dy& f (x) }
�

1
Kn(W0 ; x, x) |7 d

[Kn(W0 ; x, y)]2 | f (y)& f (x)| W0(y) dy.
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Let & f &� denote the uniform norm of f on 7d and let |x ( f ) be the local
modulus of continuity of f, at a point x # Int 7d, defined by

|x ( f, =)= sup
|x&y|1�=

[ | f (x)& f (y)|: y # Int 7d].

Evidently, if f is continuous on Int 7d, then |x ( f; =) � 0 as = � 0. For
x # Int 7d, we choose =>0 such that the set 7=(x) :=[y # 7d: |y&x| 1<=]
is inside 7d. We then have

In(x)�|x ( f; =)
1

Kn(W0 ; x, x) |7= (x)
[Kn(W0 ; x, y)]2 W0(y) dy

+
1

Kn(W0 ; x, x) |7 d"7= (x)
[Kn(W0 ; x, y)]2 | f (x)& f (y)| W0(y) dy

�|x ( f; =)+2 & f &�
1

Kn(W0 ; x, x)

_|
7d"7= (x)

[Kn(W0 ; x, y)]2 W0(y) dy.

Hence, by the compact formula of K(W0 ; x, x) and Theorem 2.3, it suffices
to prove that

lim
n � �

1

\n+d
n +

|
7 d"7= (x)

[C ((d+1)�2)
2n (- x1 y1 =1+ } } } +- xd+1 yd+1 =d+1)]2

_W0(y) dy=0,

where = i=\1. Let

t(x, y)==1 - x1 y1 + } } } +=d - xd yd +=d+1 - xd+1 yd+1 .

Since |xi& yi |= |(- x i &- yi )(- xi +- yi )|�2 |- xi &- yi | for x, y # 7d,
we have

|t(x, y)|�- x1 y1 + } } } +- xd yd +- 1&|x|1 - 1&|y| 1

=1&
1
2 _(- 1&|x|1 &- 1&|y|1 )2+ :

d

k=1

(- xi &- yi )
2&

�1&
1
2

:
d

k=1

(- x i &- yi )
2
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�1&
1
8

:
d

k=1

|x i& yi |
2

�1&
1

8d
|x&y| 2

1 ,

where the last inequality follows from the Cauchy inequality, |x&y|1�
- d |x&y|2 . If y # 7d"7=(x), then |x&y| 1�=; hence, we have |t(x, y)|�
1&(1�2d ) =2. In particular, this shows that

1&t(x, y)2�1&\1&
1

8d
=2+

2

:=\2>0, y # 7d"7=(x),

where we assume that = has been chosen small enough so that 1&=2�8d<1.
Now, from Lemma 2.1, (2.4) and the identity [1, p. 256, (6.1.18)] of the
Gamma function, it follows that

1

\n+d
n +

[C (d+1�2)
n (t)]2=

1(1�2) 1((d�2)�2)
1((d+1)�2)

2
?

1
n+(d+1)�2

__ 1
(1&t2)d+1�2 cos2(N%+#)+O(n&1)& ,

where N=n+(d+1)�2, #=(d+1) ?�4, t=cos %. Therefore, using the
estimate of t(x, y) for y # 7d"7=(x), it follows from Lemma 2.1 that

1

\n+d
n +

|
7 d "7= (x)

[C ((d+1)�2)
n (- x1 y1 =1+ } } } +- xd+1 yd+1 =d+1)]2

_W0(y) dy

=O(1)
1

n\d+1+O(n&2), y # 7d"7=(x),

which converges to zero as n � �. From the proof it is also clear that
the convergence is uniform over a compact set inside Int 7d. The proof is
complete. K

We are now ready to prove the upper bound (1.5) for the asymptotics
of 4n(W).

Theorem 3.2. Let W be a nonnegative weight function on 7d, such that
W is continuous in Int 7d and W�W0 is bounded on 7d. Then

lim sup
n � � \n+d

n + 4n(W; x)�
W(x)
W0(x)

, x # Int 7d.
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Proof. Because of the definition of 4n in (1.1) we have

\n+d
n + 4n(W; x)

�\n+d
n + 1

[Kn(W0 ; x, x)]2 |
7d

[Kn(W0 ; x, y)]2 W(y) dy.

By Theorem 2.3, the desired result is the consequence of the limit

lim
n � �

1
Kn(W0 ; x, x) |7d

[Kn(W; x, y)]2 W(y) dy=
W(x)
W0(x)

, x # Int 7d,

which is a corollary of Theorem 3.1 with f =W�W0 by the assumption
on W. K

One immediate question is does the much stronger result of limit (1.4)
holds under the assumption of the above theorem. For W=W0 , the limit
indeed holds according to Theorem 2.3. Using an approach of Freud (cf.
[6, Theorem 4.3.1]), we may prove a lower bound for lim inf 4n(W) in the
form of cW(x)�W0(x), where c<1, for a more restricted class of weight
functions. Since we do expect that the limit (1.4) will hold in a general
setting, here we are content to give the following result.

Theorem 3.3. If W=W0q2, where q is a polynomial of d variables, then

lim
n � � \n+d

n + 4n(W; x)=
W(x)
W0(x)

, x # Int 7d.

Proof. Let m denote the degree of q. By the definition of 4n in (1.1), we
have

4n(W; x)= min
P(x)=1, P # 6 d

n
|

0
P2(y) W(y) dy

= min
P(x)=1, P # 6d

n
|

0
|P(y) q(y)|2 W0(y) dy

=q2(x) min
P(x)=1, P # 6d

n
|

0
|P(y) q(y)�q(x)|2 W0(y) dy

�q2(x) min
Q(x)=1, Q # 6 d

n
|

0
Q2(y) W0(y) dy

=
W(x)
W0(x)

4n+m(W0 ; x).

131ORTHOGONAL SERIES ON SIMPLEX



Hence, using the fact that ( n+m+d
d )�( n+d

d ) � 1 as n � �, it follows from
Corollary 2.4 that

lim inf
n � � \n+d

n + 4n(W; x)�
W(x)
W0(x)

, x # Int 7d.

The desired result follows from the above inequality and Theorem 3.2. K

In particular, for W: in (2.1), we have that W: �W0 is the square of a
polynomial if all :i are even integers. Hence, we conclude,

Corollary 3.4. If : # 2Nd, that is, :i # 2N for all i, then

lim
n � � \n+d

n + 4n(W: ; x)=
W:(x)
W0(x)

, x # Int 7d.

Although the compact formula for 4n(W:) is known for all :, we do not
see how to prove the asymptotic formula for general : at this point. It is
worth mentioning that an analog result of Theorem 3.2 has been proved for
radial weight functions on the unit ball Bd in [7], and the limit (1.5) has
been established for U:(x)=u:(1&|x|2):&1�2 on Bd, where u: is a normaliza-
tion constant, and U0 serves as the corresponding Chebyshev weight function
[2, 7]. The proof of these facts in [7] relied on a compact formulae for Pn(U:)
derived in [9] for the purpose of studying summability of Fourier orthogonal
series. Following the approach in [7], we may be able to prove the limit (1.5)
in the case that exactly one component of : is not zero.

We conclude this note with the following remark. The results that we
obtained above and in [7] indicate a similarity between the structure on
7d and that on Bd. This similarity is by no means accidental. In fact, there
is a one-to-one correspondence between the class of orthogonal polyno-
mials on 7d and the class of Z2 _ } } } _Z2 invariant orthogonal polyno-
mials on Bd.
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